УДК 621.372.2

ОЦЕНКА ЗАЩИТНЫХ ХАРАКТЕРИСТИК ПЕЧАТНОЙ ПЛАТЫ С МОДАЛЬНЫМ РЕЗЕРВИРОВАНИЕМ ПОСРЕДСТВОМ ЛИЦЕВОЙ СВЯЗИ

К.Н. Абрамова

Научный руководитель: доцент, д.т.н. Т.Р. Газизов Томский государственный университет систем управления и радиоэлектроники, Россия, г. Томск, пр. Ленина, 40, 634050

E-mail: akn@tu.tusur.ru

ASSESSMENT OF THE PROTECTIVE PERFORMANCE OF A PRINTED CIRCUIT BOARD WITH MODAL RESERVATION BY MEANS OF BROAD SIDE COUPLING

K.N. Abramova

Scientific Supervisor: Ass. Prof., Dr. T. R. Gazizov

Tomsk State University of Control Systems and Radioelectronics, Russia, Tomsk, Lenin str., 40, 634050

E-mail: akn@tu.tusur.ru

Abstract. The results of application of modal reservation with broad-side coupling on a test PCB are presented. Evaluation of protective characteristics of this PCB has been performed. Particularly the modal per-unit-length delays and their difference, the difference of modal delays for a line of a particular length and the geometric mean values of modal wave impedances have been obtained.

Введение. Для повышения помехоустойчивости радиоэлектронной аппаратуры (РЭА) применяют резервирование – две или более копии резервируемого устройства. При выходе из строя резервируемого устройства подключается его резервная копия, что позволяет продолжить работу в том же режиме без необходимости остановки для проведения диагностики и замены неисправного оборудования. В работе [1] предложен способ повышения надежности РЭА, основанный на холодном резервировании с применением модальной фильтрации – модальное резервирование (МР). МР представляет собой способ трассировки, в котором предполагается наличие двух печатных проводников (резервируемого и резервного), между которыми образуется сильная электромагнитная связь, что позволяет за счет модальных искажений реализовать защиту РЭА от сверхкороткого импульса (СКИ). В работе [2] приведен общий обзор МР и исследований его применения в отношении излучаемых помех. Однако не были рассмотрены реализация МР и исследование защитных характеристик на конкретной печатной плате (ПП).

Целью данного исследования является реализация ПП с MP с лицевой связью и оценка ее защитных характеристик.

Экспериментальная часть. Для реализации MP с лицевой связью выбрана измерительная ПП, предназначенная для проведения испытаний на электромагнитную совместимость [3]. Размещение компонентов резервной схемы выполнено полностью симметрично на противоположных сторонах относительно исходной ПП. Таким образом, микроконтроллер и все периферийные компоненты резервной схемы расположены на нижней стороне ПП, а соединители — на верхней. Размещение резервных компонентов на противоположном слое ПП выполнено с учетом того, что каждый номер

вывода резервируемого компонента совпадает с номером вывода резервного компонента. При таком размещении компонентов габариты ПП остались неизменными (рис. 1а, б). Топология слоев измерительной ПП с МР показана на рис. 1в, г. Трассировка резервной цепи выполнена на нижнем слое ПП, а резервируемой – зеркально, на верхнем.

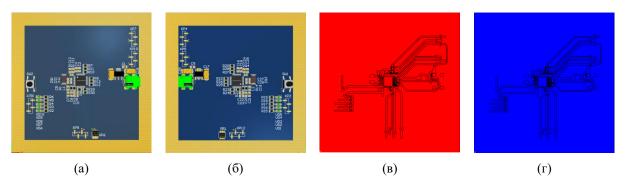


Рис. 1. Трехмерная модель и топология верхней (а, в) и нижней (б, г) сторон измерительной ПП с МР

Для оценки защитных характеристик разработанной измерительной ПП с MP с лицевой связью выполнено моделирование поперечного сечения каждой пары одноименных трасс (резервируемого и резервного проводников) в системе TALGAT. На рис. 2а показан верхний слой измерительной ПП с пронумерованными сигнальными трассами. Каждый сигнальный проводник имеет резервный, который находится точно под ним на нижнем слое ПП. На рис. 46 приведено поперечное сечение моделируемых структур со следующими параметрами: расстояние между проводниками s = 200 мкм, толщина проводника t = 35 мкм, толщина диэлектрика h = 0,18 мм, толщина паяльной маски $h_m = 30$ мкм, диэлектрическая проницаемость $\varepsilon_r = 4,7$. Ширина сигнальных проводников (резервируемого и резервного) w, ширина опорных проводников w_1 , w_2 и длина линий задаются индивидуально для каждого проводника.

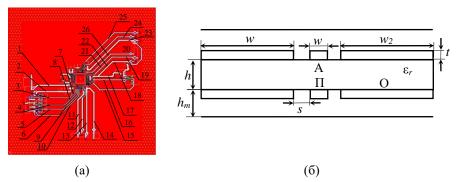


Рис. 2. Сигнальные трассы измерительной ПП с MP (a), поперечное сечение исследуемой структуры с учетом паяльной маски (б)

Результаты. В табл. 1 приведены результаты моделирования сигнальных линий измерительной ПП с MP с лицевой связью, а именно погонные задержки мод (τ_1 , τ_2) и их разность ($\Delta \tau$), разность задержек ($\Delta \tau l$) в линии длиной l и среднее геометрическое (Z) значение волновых сопротивлений мод.

Заключение. В результате разработана ПП с MP с лицевой связью, где размещение компонентов и трасс попарно симметрично относительно ПП. Оценка защитных характеристик ПП с MP показала, что, разность погонных задержек, в среднем, около 1,3 нс/м и достигает 1,51 нс/м, что является хорошим результатом (для стеклотекстолита с низким значением ε_r = 4,7). Максимальная длина трассы, в силу специфики ПП, мала (около 40 мм). Максимальная разность задержек мод, достигает 53 пс, что говорит о возможности модального разложения СКИ не более такой длительности.

Таблица 1 Результаты моделирования сигнальных линий измерительной ПП с MP с лицевой связью

No	w, mm	l, mm	w_I , MM	W2, MM	τ_1 ,HC/M	<i>т</i> 2,нс/м	$\Delta \tau$,HC/M	$\Delta \tau l$,πc	<i>Z</i> ,Ом
1	1	19,34	42,1	2,71	5,38	6,89	1,51	29	30,7
2	1	14,48	2,7	2,91	5,39	6,89	1,5	22	30,8
3	0,5	15,37	2,9	3,94	5,59	6,78	1,18	18	41,7
4	0,4	13,81	3,9	1,99	5,66	6,74	1,08	15	45,6
5	0,5	12,49	1,9	3,3	5,59	6,78	1,19	15	41,7
6	0,5	15,79	3,3	16,4	5,59	6,78	1,19	19	41,7
7	0,5	7,21	1,1	0,12	5,66	6,78	1,12	8	42,3
8	0,5	13,55	0,1	0,48	5,69	6,78	1,08	15	42,5
9	0,5	16,97	0,5	0,19	5,67	6,78	1,11	19	42,3
10	0,5	22,59	0,2	2,14	5,63	6,78	1,15	26	42,0
11	1	26,36	36,2	1,5	5,39	6,89	1,50	40	30,7
12	1	19,9	1,5	1,52	5,40	6,89	1,49	30	30,8
13	1	27,4	1,5	3,37	5,39	6,89	1,50	41	30,8
14	1	27,8	3,4	31,6	5,38	6.89	1,51	42	30,7
15	0,7	29,8	33,6	5,5	5,49	6,83	1,34	40	36,1
16	0,7	20,1	5,5	1,1	5,49	6,83	1,34	27	36,2
17	0,9	12,55	1,5	1,1	5,44	6,87	1,43	18	32,4
18	0,9	25,2	1,2	6,9	5,42	6,87	1,45	37	32,3
19	0,7	14,4	0,9	1,9	5,51	6,83	1,32	19	36,3
20	0,7	12,4	7,5	0,9	5,49	6,83	1,34	16	36,2
21	0,7	17,1	1,1	0,9	5,51	6,83	1,32	23	36,3
22	0,7	16,2	1	1,2	5,51	6,83	1,32	21	36,3
23	1	9,2	1,1	7,8	5,39	6,89	1,50	14	30,9
24	0,7	34,1	2,3	1,3	5,50	6,83	1,33	45	36,2
25	0,7	39,7	7,3	2,3	5,49	6,83	1,34	53	36,1
26	1	27,6	1,3	1,1	5,41	6,89	1,48	41	30,9

Работа выполнена при финансовой поддержке Российского научного фонда проект №19-19-00424- Π , (https://rscf.ru/project/22-19-35072/) в TУСУРе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Газизов Т.Р., Орлов П.Е., Заболоцкий А.М., Буичкин Е.Н. Новый способ трассировки печатных проводников цепей с резервированием // Доклады ТУСУР. 2015. №3(37). С. 129-131.
- 2. Alhaj Hasan A., Gazizov T.R. Ensuring the Reliability and EMC by Modal Reservation: A Brief History and Recent Advances// Symmetry. 2022. V. 14., № 2466. P. 1–27.
- 3. Попов П.А., Третьяков Т.И., Демаков А.В. Разработка измерительных печатных плат для испытаний интегральных схем на электромагнитную совместимость в ТЕМ-камере // Электронные средства и системы управления. Материалы докладов Международной научно-практической конференции. 2021. № 1-2. С. 30–33.