- 3. Селиванова Е.С. Проектирование и разработка веб-приложения для анализа данных трудоустройства обучающихся и выпускников / Е. С. Селиванова, А. П. Клишин [Текст]// Молодежь и современные информационные технологии: сборник трудов XIX Международной научно-практической конференции студентов, аспирантов и молодых ученых (Томск, 21–25 марта 2022 г.)/ Томский политехнический университет. Томск, 2022. С. 87-89.
- 4. Селиванова Е.С., Газизов Т.Т. Веб-приложение для построения графика оптимальной траектории обучения [Текст] // Научно-педагогическое обозрение. 2022. Вып. 4 (44). С. 135-143.
- 5. Иванов П.Д., Лопуховский А.Г. Технологии Big Data и различные методы представления больших данных // Инженерный журнал: наука и инновации, 2014. Вып. 9. [Электронный ресурс]. URL: http://engjournal.ru/catalog/it/asu/1229.html .
- 6. Борисова А.А., Ряполова К.В. Информационное сопровождение трудоустройства выпускников вузов [Электронный ресурс]. URL: https://cyberleninka.ru/article/n/informatsionnoe-soprovozhdenie-trudoustroystva-vypusknikov-vuzov (дата обращения: 20.04.2022).
- 7. Создание динамического веб-сайта на языке программирования Руthon с применением фреймворка django [Электронный ресурс]. URL: https://dspace.kpfu.ru/xmlui/bitstream/handle/net/108796/iton2016_117_119.pdf
- 8. Matplotlib: Visualization with Python [Электронный ресурс]. URL: https://matplotlib.org/

© Селиванова С.Е., Клишин А.П., 2023

УДК 537.2:621.372.2

О ВЛИЯНИИ ЗАКРУГЛЕНИЯ ПРОВОДНИКОВ МНОГОПРОВОДНОЙ МИКРОПОЛОСКОВОЙ ЛИНИИ ПЕРЕДАЧИ НА МАТРИЦЫ ЕЕ ПОГОННЫХ ПАРАМЕТРОВ

Снетков П.П., Максимов А.Е.

Томский государственный университет систем управления и радиоэлектроники, Томск, Россия

Аннотация. Исследовано влияние типов закругления торцов проводников трехпроводной микрополосковой линии передачи на ее матрицы погонных параметров. Рассмотрено 2 типа закругления торцов проводников и 8 вариаций геометрических параметров. Показано, что при увеличении толщины и уменьшении ширины проводников линии закругления их торцов приводят к большим изменениям в матрицах.

Ключевые слова: многопроводная линия передачи, закругление торцов проводников, метод моментов.

При создании современных радиоэлектронных средств (РЭС) особое внимание уделяется вопросам их стабильного функционирования в различных климатических и электромагнитных условиях. Надежность и электромагнитная совместимость РЭС могут быть исследованы аппаратно с использованием

опытных образцов, что требует высоких затрат средств и времени, а также наличия высококвалифицированных специалистов. Поэтому для замены затратных испытаний математическим моделированием используются различные системы автоматизированного проектирования, такие как Ansys Q3D Extractor, FasterCap, LINPAR, TALGAT [1, 2] и др.

Математическое моделирование РЭС в целом и линий передачи (ЛП), как основного элемента РЭС, в частности, выполняется, преимущественно, с применением различных численных методов. Метод моментов (МоМ) является одним из таковых.

Известно, что заряд в проводниках распределен неравномерно, а именно концентрируется на их границах, причем такое поведение усиливается в углах [3]. При проектировании ЛП их активные проводники, как правило, имеют прямоугольную форму, однако при рассмотрении реальных печатных плат возникает противоречие. Так, реальная форма проводников не является прямоугольной в поперечном сечении из-за особенностей технологических процессов производства печатных плат, а их торцы оказываются закругленными. Поэтому при моделировании возникает резкий рост плотности заряда в углах проводников, что неконтролируемо искажает значение емкости (поскольку она является суммой плотности заряда по периметру проводника), внося определенный вклад в погрешность ее вычисления.

В результате, актуален поиск подходов к устранению неточности при вычислении плотности заряда. При этом наиболее рациональным вариантом представляется закругление торцов проводников.

Рассмотрены три варианта трехпроводной микрополосковой ЛП (далее в тексте ЛП 1, 2 и 3 соответственно). Поперечные сечения представлены на рис. 1, они различаются типами закругления проводников. Так, в ЛП 2 проводники закруглены только в верхней части, а в ЛП 3 — верхней и нижней частях. В ЛП 1 проводники имеют прямоугольное сечение.

Выбраны следующие параметры поперечных сечений: расстояние между проводниками s=0,6 мм, расстояния от проводников до границ ЛП d=1,5 мм, толщина диэлектрической подложки h=0,5 мм, ее относительная диэлектрическая проницаемость $\varepsilon_r=4,4$. Радиус закругления торцов проводников принимался равным r=0,5 t, 0,55 t и 0,8 t, где t — толщина проводников.

В ходе работы исследовалось влияние толщины t и ширины w проводников, а также радиуса r на точность расчета матриц электростатической (**C**) и электромагнитной (**L**) индукции. Ширина проводников принимала значения w = 0.2 и 0.4 мм, а их толщина -t = 18, 35, 70 и 105 мкм. Использовалась густая равномерная сегментация границ ЛП с длиной сегментов t/3 для t = 18 мкм и 35 мкм, и t/5 для t = 70 мкм и 105 мкм, аналогично [4]. На рис. 2 приведены примеры сегментации границ ЛП.

Для определения влияния радиуса закругления на элементы матриц погонных параметров при равных t вычислены различия Δc и Δl с использованием нормы Фробениуса:

$$\Delta c = \frac{\|\mathbf{C}_1 - \mathbf{C}_{2(3)}\|}{\|\mathbf{C}_1\|}, \ \Delta l = \frac{\|\mathbf{L}_1 - \mathbf{L}_{2(3)}\|}{\|\mathbf{L}_1\|},$$

где нижние индексы указывают на моделируемую ЛП.

Рис. 1. Поперечные сечения ЛП 1 (a), 2 (б) и 3 (в)

Рис. 2. Примеры сегментации части границ ЛП 2 (а) и ЛП 3 (б)

Получены различия в матрицах для ЛП 2 и 3 относительно ЛП 1. Так, результаты при w=0,2 мм сведены в табл. 1, а при w=0,4 мм — в табл. 2. Отметим, что расчеты для w=0,2 мм при r=0,5 t и t=105 мкм произведены не были, т.к. двойной радиус закругления в данном случае превышает ширину проводников.

Таблица 1. Влияние формы и радиуса закругления торцов проводника на

матрицы C и L при w = 0,2 мм

матрицы С и L при w = 0,2 мм						
t, MKM	ЛП	r	Δc , %	$\Delta l,\%$		
18	2	0,5 t	0,763	1,470		
		0,55 t	1,258	1,317		
		0,8 t	1,458	0,824		
	3	0,5 t	0,369	1,180		
		0,55 t	2,987	1,073		
		0,8 t	3,037	0,634		
	2	0,5 t	1,288	2,602		
		0,55 t	1,947	2,334		
35		$0.8 \ t$	2,143	1,427		
33	3	0,5 t	1,724	2,418		
		0,55 t	5,193	2,079		
		0.8 t	4,780	1,177		
70	2	0,5 t	1,888	4,391		
		0,55 t	2,545	3,998		
		0.8 t	7,310	2,518		
	3	0,5 t	5,563	4,573		
		0,55 t	7,111	4,039		
		0.8 t	2,589	2,462		
105	2	0,55 t	1,884	5,509		
		0,8 t	1,943	3,424		
	3	0,55 t	11,256	5,835		
		0.8 t	8,155	4,019		

Таблица 2 – Влияние формы и радиуса закругления торцов проводника

на матрицы C и L при w = 0.4 мм

t, мкм	ЛП	r	Δc, %	Δl , %
18	2	0,5 t	0,484	1,960
		0,55 t	0,837	2,054
		0,8 t	0,995	2,359
	3	0,5 t	0,173	2,115
		0,55 t	2,002	2,196
		0,8 t	2,077	2,465
35	2	0,5 t	0,811	1,591
		0,55 t	1,286	1,431
		0,8 t	1,461	0,881
	3	0,5 t	0,992	1,419
		0,55 t	3,430	1,262
		0,8 t	3,245	0,758

t, мкм	ЛП	r	Δc, %	Δ1, %
70	2	0,5 t	1,147	2,682
		0,55 t	1,637	2,460
		0,8 t	4,920	1,573
	3	0,5 t	3,521	3,010
		0,55 t	4,674	2,665
		0,8 t	1,734	1,636
105	2	0,5 t	0,429	3,724
		0,55 t	1,109	3,380
		0,8 t	1,263	2,150
	3	0,5 t	5,865	4,460
		0,55 t	6,938	3,897
		0,8 t	5,360	2,374

Из таблиц 1 и 2 можно сделать вывод, что при увеличении толщин проводников различия Δc и Δl увеличиваются, а при увеличении их ширин — уменьшаются. Из таблиц также видно, что различия для ЛП 3 более существенны, чем для ЛП 2, кроме того, они возрастают при увеличении радиуса скругления.

Исследование выполнено за счет гранта Российского научного фонда №22-79-00101 в ТУСУР.

Список использованных источников

- 1. Новые возможности системы моделирования электромагнитной совместимости TALGAT / Куксенко С.П., Заболоцкий А.М., Мелкозеров А.О., Газизов Т.Р. // Доклады ТУСУР. 2015. № 2(36). С. 45–50.
- 2. Моделирование элементов критичной радиоэлектронной аппаратуры: новые подходы, модели и алгоритмы, их реализация и применение / Газизов Т.Р., Заболоцкий А.М., Куксенко С.П., Газизов Т.Т., Квасников А.А., Комнатнов М.Е., Суровцев Р.С. // Наноиндустрия. 2020. Т. 13, № S5-2(102). С. 425–432.
- 3. Dworsky L.N. Introduction to numerical electrostatics using MATLAB. Hoboken, New Jersey: John Wiley & Sons, 2014. 452 p.
- 4. Maksimov, A. E. Accurate capacitance matrices for multiconductor transmission lines / A. E. Maksimov, S. P. Kuksenko // IEEE Transactions on Electromagnetic Compatibility. 2022. Vol. 64, no. 5. P. 1514–1521. DOI 10.1109/TEMC.2022.3175717.

© Снетков П.П., Максимов А.Е., 2023