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Abstract: The article proposes a generalized algorithm for evaluating the shielding effectiveness (SE)
of electronic equipment enclosures. The algorithm is based on a number of analytical models that use
equivalent circuits to obtain SE values. The article begins with a brief review and interpretation of the
mathematical formulation used in the algorithm. Then, we describe the proposed algorithm using
flowcharts, and we perform its validation. The validation results show that the proposed algorithm
has acceptable accuracy and gives SE values comparable to numerical methods or measurements,
with much less time costs. The last part of the article presents the software developed to evaluate SE
based on analytical models.

Keywords: electromagnetic compatibility; shielding effectiveness; enclosure; resonant cavity; analytical
model; software

1. Introduction

Electromagnetic shielding by enclosures is one of the main ways of protecting elec-
tronic equipment against the influence of radiated emissions [1]. The main objective of
shielding enclosure design is to find the parameters that ensure the maximum of shielding
effectiveness (SE), which indicates, in dB, how well the shield reflects or suppresses emis-
sions. However, SE values depend on many factors, such as excitation source frequency [2],
the shield material [3], the enclosure shape and size [4], apertures [5,6], internal filling [7–9],
the observation point position, etc. All of this makes the SE evaluation a challenging task.
Accurate SE values for an enclosure with a complex and highly detailed structure can be ob-
tained using full-wave numerical analysis based on the Finite Element Method (FEM) [10],
Finite-Difference Time-Domain Method [11], Transmission Line Matrix Method [12], etc.
However, these methods consume a large amount of RAM and are characterized by long
computation times [13]. For these reasons, full-wave analysis is poorly suited at the early
stages of the enclosure design, where multiple SE evaluations can be required. In such
situations, it is advisable to use analytical models, since they have acceptable accuracy and
low computational complexity.

At the moment, a large number of analytical models for evaluating the SE of enclosures
are known. Some of them are based on the power balance [14,15] and diffusion [16,17]
equations, others use Bethe’s theory of diffraction by small holes [18,19]. However, models
based on equivalent circuits are the most widely used. For shielding enclosures, the
equivalent circuit model was first proposed by Robinson et al. [20]. It has since undergone
many modifications. However, until now, these modifications have not been systematized
and generalized so that equivalent circuits can be applied to arbitrary enclosures. The
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purpose of this article is to fill this gap and develop a generalized algorithm based on
equivalent circuits for evaluating the SE of electronic equipment enclosures.

In addition to the introduction, the article contains several other sections. Section 2
presents mathematical formulation of the equivalent circuit model and gives a brief review
of its modifications. Section 3 describes the generalized algorithm that we developed to
evaluate the SE of shielding enclosures. Section 4 contains the results of the algorithm
validation on several typical electronic equipment enclosures. Section 5 presents the results
of the authors’ work on new software for analytical evaluation of the SE. Finally, Section 6
concludes the main outcomes of the article.

2. Mathematical Foundation of Generalized Algorithm

This section presents a brief review of the model from [20] and its modifications, which
we used to develop the generalized algorithm of the SE evaluation.

2.1. Formulation of Equivalent Circuit Model

According to [20], the rectangular enclosure with a volume of a × b × d m3 and a
rectangular aperture (with an area of w × l m2) in the front wall (Figure 1a) are replaced by
the equivalent circuit, shown in Figure 1b. In this circuit, a plane wave with frequency f,
exciting the enclosure, is represented by a voltage source V0 and electrical resistance Z0
equal to the free-space impedance (120π Ω). This representation assumes that the plane
wave is incident normal to the enclosure front wall, and the E-field vector is perpendicular
to the length l of the aperture, giving a worst-case SE. The enclosure is replaced by segments
of a rectangular waveguide with characteristic impedance Zg and propagation constant kg.
The front wall with the aperture is represented by the Zap impedance. To calculate the SE, the
equivalent circuit is transformed with respect to the observation point p, using Thevenin’s
theorem and the transmission line theory. As a result, the SE values are determined from
the current ip or voltage Vp in the equivalent circuit obtained after the transformation. Next,
let us look at the SE calculation procedure using the model from [20] in more detail.
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Figure 1. Rectangular enclosure with aperture excited by a plane wave (a), equivalent circuit for
calculating SE (b).

According to [20], in the first calculation step, the Zap impedance of the enclosure front
wall is determined. It is assumed that the wall is replaced by two short-circuited segments of
a coplanar stripline, each with a length of l/2 (i.e., half of the aperture width). The Zap value is
calculated as the product of the correction factor l/a (where a is the width of the front wall)
and the total input impedance of two segments connected in parallel:

Zap = j
1
2

l
a

Z0s tan
(

k0
l
2

)
, (1)
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where; j is the imaginary unit, k0 = 2π/λ is the free-space wavenumber, λ is the wavelength
of the excitation source, and Z0s is the characteristic impedance of coplanar stripline, which
can be calculated as:

Z0s = 120π2

ln

2
1+ 4

√
1− (we/b)2

1− 4
√

1− (we/b)2

−1

, (2)

where; b is the height of the enclosure, and we is the effective height of the aperture, defined as:

we = w− 5t
4π

(
1+ ln

4πw
t

)
, (3)

where; w is the height of the aperture, and t is the enclosure thickness.
Next, before transforming the equivalent circuit, the Zg and kg values are calculated

for the rectangular waveguide segments replacing the enclosure. In [20], it is assumed that
a dominant mode (TE10) is propagated in the enclosure, so Zg and kg are calculated as:

Zg = Z0/

√
1−

(
λ

2a

)2
, (4)

kg = k0

√
1−

(
λ

2a

)2
. (5)

Once Zap, Zg, and kg have been calculated, the procedure of the equivalent circuit
transformation begins. First, the voltage source is transformed to point q in the circuit
(see Figure 1b). For this purpose, V0 and Z0 are combined with Zap as:

V1 = V0Zap/
(
Z0 + Zap

)
, (6)

Z1 = Z0Zap/
(
Z0 + Zap

)
. (7)

As a result of (4) and (5), the equivalent circuit takes the form shown in Figure 2a. The
resulting excitation source is further transformed from point q to the observation point
p. This gives the values of voltage V2 and impedance Z2. At the same time, the load
impedance Z3 of the equivalent circuit is calculated, which is the input impedance of the
short-circuited segment of the waveguide behind the observation point p. The following
equations are used to calculate V2, Z2, and Z3 in [20]:

V2 =
V1

cos
(
kg p
)
+ j
(
Z1/Zg

)
sin
(
kg p
) , (8)

Z2 =
Z1 + jZg tan

(
kg p
)

11 + j
(
Z1/Zg

)
tan
(
kg p
) , (9)

Z3 = jZg tan
[
kg(d− p)

]
, (10)

where; d is the depth of the enclosure.
After calculating (6)–(8), the equivalent circuit takes the form shown in Figure 2b. In

this circuit, it is easy to find the Vp and ip values needed to calculate the electrical and
magnetic SE, respectively. For example, Vp can be calculated as:

Vp =
V2Z3

Z2 + Z3
. (11)
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The electric SE at the observation point p is then defined as:

SE = −20 log10

∣∣∣∣2Vp

V0

∣∣∣∣. (12)

In its original form, as described in [20], the analytical model, based on equivalent
circuits, has a number of limitations. First, the shielding enclosure contains only one
aperture with a rectangular shape and a central position on the front wall. Second, the SE
evaluation technique does not take into account the resonances corresponding to higher-
order modes (TEmn and TMmn) excited in the enclosure. Third, the equivalent circuit from
Figure 1b does not take into account the internal filling of the enclosure or the aperture.
There are other limitations, such as those imposed on the polarization and incidence angle
of the plane wave exciting the enclosure due to its representation by a voltage source.
However, a number of modifications to the model from [20] are known to overcome most
of these limitations. We will look at some of them below.

2.2. Modifications of Aperture Representation

Several modified models have been proposed in [21–23] to evaluate the SE of an
enclosure with arbitrarily positioned aperture. However, the simplest and most accurate
model has been developed by the authors of [24]. According to this model, the value of Zap
at an arbitrary location of the aperture on the frontal wall can be calculated as the product
of (1) and the following factor:

Cmn = sin
(

mπX
a

)
cos
(

nπY
b

)
, (13)

where; m and n are the not-negative integers, defining the numbers of TEmn and TMmn
modes, and X and Y are the coordinates of the aperture centre on the front wall
(see Figure 3).
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In [25], a modified analytical model for evaluating the SE of an enclosure with a
circular aperture of radius r was proposed. The Zap value can be calculated using (1) or
(11), but, first, the geometric dimensions of an equivalent rectangular aperture must be
determined. The following equation is used for this purpose:

l = w = r
√
π. (14)

According to [26], the Zap value for an elliptical shape aperture can be calculated as the
product of (1) and (11). However, the characteristic impedance Z0s in (1) must be replaced by:

Z0s =
ZmZe

Zm + Ze
, (15)

where;

Zm =
1
2

[
k2

gS
3πZg

+
S

j2π fµ0χm

]−1

, (16)

Ze = 2

[
k4

gb2S
3πZg

+
j2π f ε0b2S

χe

]−1

, (17)

where; S is the area of the elliptic aperture, ε0 and µ0 are the electric and magnetic constants,
and χe and χm are the electric and magnetic polarizabilities of the aperture calculated from
its dimensions and complete elliptic integrals of the first and second kind (for more details
see [26]), respectively.

Based on equivalent circuits, the SE evaluation for an enclosure with an arbitrary-
shaped aperture can also be realized. For this purpose, according to [27,28], Zap can be
calculated from the results of full-wave numerical analysis. However, in [29], a fully
analytical formulation for determining the Zap impedance for an arbitrary-shaped aperture
has been proposed. Starting from the centre, the aperture is divided into several intervals
(Figure 3b). Each of these intervals is replaced by a segment of a regular coplanar stripline
with length li and width wi. The transmission line segments replacing the aperture edges
are assumed to be short-circuited. First, the input impedance Zin i of these segments is
calculated, similar to (8). The calculated values act as loads for the following segments of
the coplanar stripline, for which the input impedance is again calculated as:

Zin = Z0s i
Zin i−1 + jZ0s i tan(k0li)

Z0s i + jZin i tan(k0li)
. (18)

The calculation by (14) continues until the two input impedances to the left and right of
the aperture centre have been determined. Eventually, Zap is determined from the parallel
connection of these two input impedances.

Real shielding enclosures of electronic equipment usually contain several apertures
with different shapes and sizes. To take this into account in the analytical SE evaluation,
the following procedure was proposed in [25]. First, using (1) or (11)–(14), Zap N values are
calculated separately for each aperture located on the front wall. Next, the total impedance
of the enclosure wall with a set of N apertures is defined as:

Zap = ∑
N

Zap N . (19)

This procedure is well suited to apertures separated from each other because it ignores
the mutual coupling between the apertures. For the same reason, it cannot be used for
enclosures with perforated walls where the apertures are quite close. One model for
calculating the impedance of a perforated wall has been proposed in [30], but it does not
take into account the thickness (t) of the enclosure wall. This drawback is deprived by the
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model from [31]. In accordance with it, when a plane wave is incident normally to the
enclosure wall, the Zap values are calculated as:

Zap = jZ0
lawa

2ab

[
1+

(
3dhdvλ

16πr3

)]− 1
2
10−

4
5

t
r , (20)

where; la and wa are the width and height of the aperture array (see Figure 4a), dh and dv are
the horizontal and vertical distances between the centers of apertures, and r is the radius of
a single aperture.
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Unfortunately, (16) gives correct results only when the aperture array is positioned
in the centre of the front wall and cannot be used if the apertures are staggered (as in
Figure 4b). A modified model from [32] was proposed for such cases. To take into account
the arbitrary position of the aperture array, Equation (16) is multiplied by the correction
factor C, defined as:

C =

∫ x0+la
x0

∫ y0+wa
y0

cos
(πy

b
)

cos
[
π(y−y0)

wa

]
sin
(
πx
a
)

sin
[
π(x−x0)

la

]
dy dx

XY
, (21)

where X, Y and x0, y0 are the coordinates of the centre and beginning (bottom left corner)
of the array, respectively. The array of staggered apertures in [32] is considered as two
separate arrays with doubled vertical distances dv between the apertures. In this case,
Zap = Zarr 1 + Zarr 2, where Zarr 1 and Zarr 2 are the impedances of two separate arrays,
which are calculated by multiplying (16) and (17).

2.3. Internal Filling of Apertures

The apertures of real electronic equipment enclosures can be filled, e.g., with metal
ventilation grilles, glass, rubber gaskets, etc. Such structures can affect the electromagnetic
field inside the enclosure and resonances exciting in the apertures, thus they are worth
considering in the SE evaluation. Several modifications of the equivalent circuit model
have been developed to take into account the internal filling of the aperture. Thus, in [33],
the authors proposed a formula for calculating the impedance Zap of a rectangular aperture
populated with wire grid (Figure 5). The Zap value is defined as:

Zap =
lw
ab

[
4qw

πD2
wσ

ψI0(ψ)

2I1(ψ)
+ jqwµ0 f ln

(
1

1− exp[−πDw/qw]

)]
, (22)

where; qw is the size of the grid cell, Dw is the wire diameter,ψ2 = j 0.5πµσ(Dw)2, σ and µ are
the conductivity and absolute permeability of wires, and I0(ψ) and I1(ψ) are the modified
Bessel functions of the first kind (zero and first order, respectively).
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In [34], a formula for calculating Zap for an aperture filled with dielectric or magnetic
material was proposed. As in [20], a front wall with the aperture is replaced by a coplanar
stripline, but a material is added in the space between the line conductors. According
to [34], Zap can be obtained as:

Zap = j
1
2

l
a

1
c
√

C′C
tan

(
πl
λ

√
C
C′

)
, (23)

where; c is the speed of light in vacuum; C is the per-unit-length capacitance of the coplanar
stripline, which only takes into account the relative permittivity εr of the material between
the conductors; and C′ is the same capacitance, but at εr = 1/µr (µr is the relative perme-
ability of the material filling the aperture). In [35], another modification of the equivalent
circuit model was proposed, which is suitable for an aperture populated with a liquid
crystal display. However, this problem can also be solved using Formula (19). For this
reason, we did not describe the model [35] in this section.

2.4. Higher Order Modes

The model from [20] assumes that only dominant mode TE10 propagates in the enclosure.
However, if the electronic equipment enclosure is electrically small or is affected by broadband
electromagnetic interference, higher-order modes TEmn or TMmn can be excited in the enclosure.
In [23], a modification of the equivalent circuit model was proposed that takes into account
higher-order modes in SE calculations. As in [20], the SE is determined from the current ip or
voltage Vp values in the equivalent circuit, but these values are calculated iteratively. First, the
characteristic impedance Zg mn and the propagation constant kg mn are calculated, depending
on the non-negative integers m and n that determine the numbers of modes excited in the
enclosure. For TEmn modes, Zg mn and kg mn are calculated as:

Zg mn = Z0/

√
1−

(
λm
2a

)2
−
(
λn
2b

)2
, (24)

kg mn = k0

√
1−

(
λm
2a

)2
−
(
λn
2b

)2
. (25)

For TMmn modes, the kg mn value is also calculated using (21), and Zg m is defined as:

Zg mn = Z0

√
1−

(
λm
2a

)2
−
(
λn
2b

)2
. (26)

At the fixed values of Zg mn and kg mn, the transformation of the equivalent circuit is
performed using expressions (4)–(8). Using (9), the voltage Vp mn for the current mode type
and number is calculated and written to the counter. Then, the m and n indexes are changed,
and the calculation is repeated again. As a result, based on the principle of superposition,
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voltages VTE
p mn and VTM

p mn are calculated, correspondingly, to TEmn and TMmn modes. The
Vp value used to calculate the SE is then defined as:

Vp =

√(
VTE

p mn

)2
+
(
VTM

p mn
)2. (27)

Note that another approach for taking into account higher-order modes was proposed
in [24]. However, the procedure of equivalent circuit transformation used in this approach
is very different from the model [20], which makes it difficult to use this procedure in the
generalized algorithm of SE evaluation.

2.5. Cylindrical Shaped Enclosure

Enclosures of electronic equipment elements can have not only a rectangular shape,
but also a cylindrical one. Accordingly, a modified analytical model was proposed in [36]
to evaluate the SE of such enclosures. It assumes that the aperture is located at the base
of the cylindrical enclosure (see Figure 6), and SE is calculated using the same equivalent
circuit as in [20].

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 26 
 

   
= − −   

   

2 2

0

λ λ
1 .

2 2g mn

m n
k k

a b
 (25) 

For TMmn modes, the kg mn value is also calculated using (21), and Zg m is defined as: 

   
= − −   

   

2 2

0

λ λ
1 .

2 2g mn

m n
Z Z

a b
 (26) 

At the fixed values of Zg mn and kg mn, the transformation of the equivalent circuit is 

performed using expressions (4)–(8). Using (9), the voltage Vp mn for the current mode type 

and number is calculated and written to the counter. Then, the m and n indexes are 

changed, and the calculation is repeated again. As a result, based on the principle of su-

perposition, voltages TE

p mn
V  and TM

p mn
V  are calculated, correspondingly, to TEmn and TMmn 

modes. The Vp value used to calculate the SE is then defined as: 

( ) ( )= +
2 2

.TE TM

p p mn p mn
V V V  (27) 

Note that another approach for taking into account higher-order modes was pro-

posed in [24]. However, the procedure of equivalent circuit transformation used in this 

approach is very different from the model [20], which makes it difficult to use this proce-

dure in the generalized algorithm of SE evaluation. 

2.5. Cylindrical Shaped Enclosure 

Enclosures of electronic equipment elements can have not only a rectangular shape, 

but also a cylindrical one. Accordingly, a modified analytical model was proposed in [36] 

to evaluate the SE of such enclosures. It assumes that the aperture is located at the base of 

the cylindrical enclosure (see Figure 6), and SE is calculated using the same equivalent 

circuit as in [20]. 

 

E 

H 

k 

2R 

2r 

d 

 

Figure 6. Cylindrical enclosure with the aperture at the base. 

To take into account the cylindrical shape of the enclosure, expressions for calculating 

the characteristic impedance and propagation constant in [36] are replaced by: 

( )= −
2

0
1 λ λ ,

g mn c mn
Z Z  (28) 

( )= −
2

0
1 λ λ ,

g mn c mn
k k  (29) 

where; λс mn is the cut-off wavelength for the mode with indexes m and n, which can be 

calculated as [37]: 

Figure 6. Cylindrical enclosure with the aperture at the base.

To take into account the cylindrical shape of the enclosure, expressions for calculating
the characteristic impedance and propagation constant in [36] are replaced by:

Zg mn = Z0/
√

1− (λ/λc mn)
2 , (28)

kg mn = k0

√
1− (λ/λc mn)

2, (29)

where; λc mn is the cut-off wavelength for the mode with indexes m and n, which can be
calculated as [37]:

λc mn = 2πR/ξmn , (30)

where; R is the enclosure radius, ξmn is the n-th root of equations J’m(αmn) = 0 (for TEmn
modes), and Jm(αmn) = 0 (for TMmn modes), where Jm(αmn) is the Bessel function of order
m, and J’m(αmn) is the first derivative of this function.

2.6. Internal Filling of Enclosures

Internal fillings, such as printed circuit boards, electronic components, cable assem-
blies, etc., can have a significant effect on the shielding and resonance performances of the
enclosure. Several modifications of the equivalent circuit model have been developed to
analyze filled enclosures. For example, in [38], a model was proposed to evaluate the SE of
a rectangular enclosure populated with dielectric plates replacing the dielectric layers of
printed circuit boards. In this equivalent circuit, the enclosure is represented as a set of rect-
angular waveguide sections with the same dimensions, but different dielectric properties
of the materials filling their cross-sections (see Figure 7).
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In waveguide sections populated with a dielectric, the characteristic impedance and
propagation constant are calculated as:

Z′g =
Z0

√
ε̂r

√
1−

(
λ′
2a

)2
, (31)

k′g =
2π
λ′

√
1−

(
λ′

2a

)2

, (32)

where; ε̂r= ε′ – jε′′ is the complex relative permittivity of this dielectric, and λ′ = λ/
√
ε̂r .

A similar approach was used in [39] to analyze the SE of cylindrical enclosures filled
with dielectrics. To calculate Z′g and k′g, the same expressions, (27)–(28), were used, but
they had component 2a replaced by λc mn, calculated using (26). Another modification of
the model from [20] is proposed in [40], in which the value of ε̂r in (27)–(28) is replaced
by the effective relative permittivity εeff. This version allows one to calculate the SE of an
enclosure with dielectric structures of an arbitrary shape (but only when the TE10 dominant
mode is excited).

In [41], the authors proposed a model to evaluate the SE of a rectangular enclosure
filled with conductive posts, which can be used to approximate dipole antennas, wires,
cable assemblies, etc. In the equivalent circuit, the post is replaced by a T-section formed by
impedances jx1 and jx2 (see Figure 8).
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The values of jx1 and jx2 are calculated as:

x2 = −
(
a/λg

)(2πr0

a

)2

(1+ F1)
−1, (33)

x1 =

(
a

2λg

)(
S′ − F′0 − F′′ 0

)
− x2

2
, (34)
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where; r0 is the radius of the post, λg = λ/
√

1− (λ/2a)2 is the wavelength in the waveg-
uide, and the expressions for calculating F1, S′, F′, and F′′ are not given in this paper to
save space and to preserve narrative integrity.

In [42], the model was developed to evaluate the SE of an enclosure filled with
conductive plates. This model can be used to approximate the conductive layers of printed
circuit boards. The plate is considered as a capacitive waveguide diaphragm that fills the
entire width of the enclosure (Figure 9a). In the equivalent circuit, the plate is replaced by
the impedance Zcp (see Figure 9b), which is defined as:

Zcp = jB−1, (35)

where; B is the susceptance of a capacitive diaphragm.
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Several expressions for calculating the B values, depending on the plate height h, are
given in [42]. For example, if the plate and enclosure heights are close (i.e., h ≈ b), B can be
calculated as:

B =
4b
λgZ0

{
πh
2b
+

1
6

(
πh
2b

)2
+

3
2

(
b
λg

)2(πh
2b

)4
}

. (36)

However, the model from [42] has some limitations. For example, the plate is con-
sidered to be electrically connected to the enclosure and also always fills its entire width.
The model proposed in [43] does not have these limitations. However, it uses numerical
integration and Green’s functions to calculate the Zgp value, which makes it difficult to
implement and use in engineering problems.

2.7. Summary

This review shows that most analytical models for evaluating the SE of electronic
equipment enclosures are based on the same approach, i.e., they use equivalent circuits.
With this in mind, these analytical models can easily be combined in calculating the SE of dif-
ferent shielding structures. Moreover, all these models can be combined into a generalized
algorithm, since the equivalent circuits replacing the enclosures are transformed according
to a strict step-by-step procedure based on well established principles of transmission line
and circuit theories.

3. Generalized Algorithm

Here, we present a generalized algorithm for evaluating the SE of electronic equipment
enclosures. For convenience, the algorithm is divided into separate functional parts,
described below, in the form of flowcharts.

3.1. Main Flowchart

The main flowchart of the developed generalized algorithm is shown in Figure 10. SE
calculations start with setting the excitation source parameters, the observation point posi-
tion, as well as the characteristics of the enclosure, its apertures, and the inhomogeneities
that fill the enclosure or apertures. The parameters are fed to the f loop input, which
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performs frequency sweeping from fs to fe. First of all, the expression for calculating Zap
impedance is selected within the f loop. In addition, the Zap values can be calculated for a
single aperture, an array, or a group of apertures. This is performed using flowcharts that
can be found in the next section. Then, based on the calculated Zap value and Thevenin’s the-
orem, the values of voltage V1 and impedance Z1 are calculated using Equations (4) and (5).
To take into account the higher-order modes excited in the enclosure, all subsequent trans-
formations of the equivalent circuit are performed inside the M and N loops. Based on
the results of these loops, we calculate the voltage Vp or current ip at the observation
point. These values are then used to determine the electric and magnetic SE. When the
f loop is complete, the SE values are output as a frequency dependence.
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3.2. Algorithms for Calculating Aperture Impedance

In the main flowchart, the calculation of the Zap impedance for an enclosure wall
with a single aperture follows the algorithm shown in Figure 11. The choice of analytical
expression is made, depending on the shape and internal filling of the aperture. In particular,
the algorithm takes into account the filling of the aperture with dielectric, magnetic, or
magnetodielectric (MDM) materials, as well as wire grids. It also provides a procedure for
calculating Zap for an arbitrarily shaped aperture, in accordance with the model from [29].
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Figure 11. Algorithm of Zap calculation for a single aperture (Flowchart 2).

The expression for calculating the Zap impedance of the aperture array (i.e., perforated
wall) is chosen based on the flowchart from Figure 12. When the aperture array is located
outside the centre of the enclosure front wall, and when the apertures are staggered, the
model from [32] is used to calculate Zap. This algorithm also allows Zap to be calculated for
arrays of round or square apertures, which are implemented by expression (12) from [25].
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Figure 12. Algorithm of Zap calculation for an aperture array or a perforated wall (Flowchart 3).
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Figure 13 illustrates a flowchart of the algorithm for selecting an analytical expression to
calculate the Zap impedance for an enclosure wall with a group of apertures. If the enclosure
wall contains an ordered group of identical circular or square apertures, then Zap is calculated
according to [32]. In other cases, the expression for calculating Zap is chosen according to the
algorithm from Figure 11.
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3.3. Algorithms for Equivalent Circuit Transformation

In the generalized algorithm, the transformation of equivalent circuits is carried out
according to the flowchart shown in Figure 14. It provides four options for transforming
the equivalent circuit, depending on the shape and internal filling of the enclosure. Thus,
for empty enclosures, the first transformation step calculates the values of Zg mn and
kg mn. The subsequent calculations are carried out in full accordance with the analytical
model from [20]. For internally-filled enclosures, transformation of equivalent circuits is
performed in accordance with the flowcharts shown in Figures 15 and 16.

Figure 15 shows the algorithm used to transform an equivalent circuit for a filled
rectangular enclosure. It starts by processing vector D containing all the dx points that
define the positions of enclosure content. First, the “Sort (D)” block sorts points dx in
ascending order (from 0 to d). The algorithm then determines the size (xmax) of vector
D, and the number of the element xd corresponding to the observation point p. Next, for
each point dx in the range x = 1, 2, . . . , xd − 1, the algorithm sequentially calculates filling
parameters and intermediate values of voltages Vx and impedances Zx. When x = xd, the
transformation for the left-hand side of the equivalent circuit ends. The last values of Vx
and Zx are stored in the VL and ZL variables, and the algorithm proceeds to calculate the
load impedance. The right-hand side of the circuit is transformed in reverse order from
xmax to xd + 1. In each segment from d to p, intermediate values of Zx are calculated. The
final load impedance ZR is determined when x = xd + 1. The values of VL, ZL, and ZR from
the algorithm are then used to calculate Vp and ip.

Figure 16 presents a flowchart of the algorithm for transforming an equivalent circuit
of filled cylindrical enclosure. It operates in a similar way to the algorithm in Figure 15, but
the calculation does not take into account the conductive structures that fill the enclosure.
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Figure 15. Algorithm of equivalent circuit transformation for a rectangular enclosure with internal
filling (Flowchart 6).
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4. Algorithm Validation

Here, we present and discuss the validation results for the generalized algorithm we
proposed for evaluating the SE.

4.1. Validation by Measurement

First of all, validation of the developed algorithm was carried out by means of mea-
surement. The SE frequency dependencies were calculated analytically and measured for an
enclosure with dimensions a = d = 300 mm and b = 120 mm, taken from IEEE STD 1597.2
standard. A total of three cases were considered. In case 1, the enclosure was empty, and, in
its front wall, there was a squared aperture with dimensions w = l = 80 mm (Figure 17). In
case 2, the aperture was the same, but the enclosure was filled with a 100 mm high conductive
plate, located at a distance of 75 mm from the front wall (Figure 18a). In case 3, the enclosure
was empty again, and, in its front wall, there was a slot with w = 4 mm and l = 190 mm, which
was filled with a dielectric with εr ≈ 3.3. In all cases, the SE was determined relative to the
E-field at the observation point located in the centre of the enclosure, i.e., at p = 150 mm.
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(Figure 19a). The SE values were determined from the transmission coefficient modules
|S21| between the two antennas, using the following equation:

SE = 20 log10

∣∣S0
21

∣∣
|S21|

, (37)

where; index “0” denotes the values of |S21| measured in the absence of the enclosure.
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The first antenna used in the test setup was an active Rusintell AI dipole with a
maximum measurement error of 2 dB, which can only be used as a receiver. The dipole
was placed outside of the enclosure and was vertically polarized. The dipole arms were
oriented perpendicular to the wide wall of the enclosure, so that the maximum of the
antenna pattern was directed towards the aperture. We did not place the receiving dipole
antenna inside the enclosure, as it is quite large and could affect the field in the enclosure,
i.e., shift the resonant frequencies, leading to incorrect SE results. The second antenna,
which was used as a transmitter, was in the form of a small-sized quarter-wave monopole
with a length of 25 mm and was placed in the center of the enclosure. Although IEEE STD
299.1 implies that the transmitting antenna must be outside the enclosure, the approach we
have taken is consistent with the reciprocity principle of scattering and radiation problems
and allows us to determine the SE quite accurately. The distance between two antennas
was 1.5 m in all cases of |S21| measurement, including those where there was no enclosure.
A Rohde & Schwarz (Munich, Germany) ZNL20 vector network analyzer, with less than
1 dB error, was used to obtain |S21| values. The test setup was used, starting from 500 MHz,
due to the limited frequency range of the receiving dipole antenna.
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For the enclosure from case 1 (with a squared aperture), the SE was also obtained by
indirect measurement using the methodology proposed in [44]. For this purpose, a stripline
with a 50 Ω impedance and a microwave resistor as a load was used (Figure 19b). The SE
values were calculated, according to [44], based on the frequency dependence of the reflection
coefficient modulus |S11| of this stripline when it is placed over the aperture of the shielding
enclosure. The values of |S11| were determined with a Micran (Tomsk, Russia) R2M series
scalar network analyzer, having less than 1.5 dB measurement error.

In order to calculate SE analytically, the separate parts of the proposed algorithm were
implemented in GNU Octave. According to the algorithm, in case 1, Zap was determined,
using Flowchart 2, based on Equation (13) at X = a/2 and Y = b/2. The equivalent circuit
transformation was performed using Flowchart 5, taking into account only the TE10 mode. In
case 2, Zap was defined, as in case 1, but the circuit transformation was performed according
to Flowchart 6, calculating Zcp using (35). In case 3, the circuit was transformed, as in case 1,
and Equation (23) was used to obtain Zap at C′ ≈ 62.8 pF/m and C ≈ 31.9 pF/m.

When we performed indirect measurements and calculations using the proposed
algorithm, the frequency dependencies of the SE were determined at a frequency resolution
of about 1 MHz. For the measurement in the anechoic chamber, the frequency resolution
was different for all three cases, but it was not less than 20 MHz. Additionally, in the
resonance region, the number of frequency points was deliberately increased in order to
determine the level of SE more accurately. To confirm the validity of the proposed algorithm,
the average values of the absolute error modulus |∆| were estimated. The calculation
of |∆| took into account all obtained SE values, including those in the resonance range.
Frequency error (difference between resonances in SE frequency dependencies) was not
taken into account. The |∆| values were calculated as:

|∆| =
∑

Tf
i=1

∣∣∣SET( fi)− SEA( fi)
∣∣∣

Tf
(38)

where; fi is some frequency point, indices T and A denote “true” (measured) and “observed”
(calculated by the algorithm) values of the SE, and Tf is the number of points in the
frequency dependence of “true” SE values.

Figure 20 shows the results of the analytical calculation and measurements for case 1
(for an empty enclosure with an 80 × 80 mm2 aperture). First of all, it can be seen that the
enclosure SE is complex and can take positive and negative values when the frequency is
changed. Negative SE occurs when coherent waves with the same phase are combined in-
side the enclosure, leading to cavity resonances. These resonances are a serious problem for
electromagnetic compatibility of electronic equipment, as, at their frequencies, the shielding
enclosure can amplify, rather than attenuate, interferences. Figure 20 also shows that the
SE frequency dependencies obtained by different approaches are quite similar. The value
of |∆| between the results of the generalized algorithm and the indirect measurement
was 5.7 dB. When comparing the results of the analytical calculation and the IEEE STD
299.1 measurement, a small difference (not more than 10 MHz) can be seen between the
resonance frequencies. This difference may be caused by inaccuracy in the enclosure manu-
facture and the influence of the monopole antenna used in the measurement. Despite this,
|∆| = 5.2 dB.

Figure 21 illustrates the SE frequency dependencies for cases 2 and 3, obtained by mea-
surements and the proposed algorithm. It can be seen that, in both cases, the measured and
calculated dependencies are close. The |∆| values were 5.6 dB and 4.2 dB for cases 2 and 3,
respectively. Thus, the results shown in Figures 20 and 21 confirm that the generalized
algorithm can evaluate the SE with acceptable accuracy.
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4.2. Validation by Numerical Analysis

Next, the generalized algorithm was validated using FEM-based numerical analysis.
The COMSOL Multiphysics® (Stockholm, Sweden) RF Module was used for this purpose.
In the FEM simulation, a perfect electrical conductor was used as the enclosure material.
A hexagonal mesh with adaptive refinement was used to discretize the enclosures. The
initial number of cells per wavelength was 45, and the mesh refinement percentage did not
exceed 25% of the total number of elements at each step. The SE values were defined as:

SE = 20 log10

∣∣E0
∣∣

|E| , (39)

where; E and E0 are the electric field strengths (intensities) at the observation point in the
presence and absence of the enclosure, respectively. In all the cases considered below, the
SE was calculated in the range from 1 MHz to 1 GHz with a resolution of just under 1 MHz,
giving frequency dependencies consisting of 1000 points.

First, using FEM and the proposed algorithm, we calculated the SE for the enclosure of
the Ethernet filter (Figure 22a). It has a volume of 440 × 42 × 197.5 mm3, a wall thickness
of 1 mm, and it has 12 square apertures (16 × 16 mm2) on the front wall. The analysis
was performed without the internal filling of the enclosure, and only the dominant mode
excitation was taken into account in the analytical calculation (m = 1 and n = 0). When
using the generalized algorithm, Zap was determined, according to Flowchart 4, based on
the combination of Equations (14) and (20). The results are shown in Figure 22b. It can be
seen that frequency dependencies of the SE, obtained by FEM and the proposed algorithm,
are in good agreement, and |∆| = 2.9 dB.
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Next, we analyzed the enclosure of the ABB FOX 515 multiplexer (Figure 23a) with
a volume of 445 × 270 × 278 mm3, a wall thickness of 1.5 mm, and an array of 108 × 15
circular staggered apertures (r = 1.5 mm) located at the top of the front wall. In the analytical
calculation, the Zap was determined according to Flowchart 3 using Equations (20) and (21).
The equivalent circuit transformation was performed, taking into account the excitation of
higher-order modes in the enclosure (mixture of TE10, TE20 and TE30 modes). Figure 23b
shows the SE frequency dependencies of the multiplexer enclosure calculated by FEM
and the proposed algorithm. A small discrepancy can be seen between the frequency
dependencies at low frequencies and in the region of 750 MHz. For the most part, however,
the results are in good agreement, and the value of |∆| is only 1.52 dB.
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Finally, using FEM and the proposed algorithm, we calculated the frequency depen-
dencies of the SE for a cylindrical enclosure with a circular aperture at R = r = 150 mm and
d = 300 mm. Moreover, the enclosure under study was completely filled with dielectric
material, with εr = 3.7. In the calculation by the proposed algorithm, Zap was determined
using (13) and (14). The transformation of the equivalent circuit was performed according
to Flowchart 7, and λc mn was determined at m = n = 1. Figure 24 illustrates that the results
obtained by the generalized algorithm and FEM are in agreement. In this case, the value of
|∆| is 3.12 dB.
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4.3. Computation Time Analysis

Table 1 presents the SE computation times for enclosures from Section 4.2 using the
proposed generalized algorithm and FEM. Note that all calculations were performed on an
outdated PC with a 6th-generation quad-core Intel Core i5 processor and 16 GB of RAM. It
can be seen that the SE calculation by FEM takes considerably longer than that using the
generalized algorithm based on equivalent circuits. In all cases, the time difference is more
than 106 times.

Table 1. Time required to calculate SE.

Enclosure Generalized Algorithm, s FEM, s

Ethernet filter 0.017 2063
Multiplexer 0.026 2764

Filled cylinder 0.014 3267

Thus, the results of the algorithm validation prove that it has acceptable accuracy and
low computation time. Consequently, using this algorithm in the early stages of designing
electronic equipment, one can quickly evaluate the SE, which will significantly reduce the
time for developing the final product.

5. Software Development

Based on the presented algorithm, we are currently developing software for the fast
SE evaluation of electronic equipment enclosures. By the time of writing, our team has
developed a prototype of this software. In this section, we briefly describe this prototype
and its features.

5.1. Programming Tools and Software Architecture

The C++ language and the Qt framework were chosen to develop the software proto-
type. The GUI of the prototype was developed using Qt Designer and the JavaScript-based
Tree.js and Csg.js libraries, which have been adapted for QML (Qt’s built-in markup lan-
guage). These libraries were used to create and visualise 3D-models of shielding enclosures.

Figure 25 presents the architecture of the software prototype in the form of a UML
package diagram. The GUI is responsible for retrieving data from the DataModel and
displaying it. The DataModel is an object model of the subject domain, which stores the
input parameters for calculations, the data for displaying the SE, and the methods for
operating with them. SE calculations are performed in the CalculationThread class, which
implements the analytical expressions from Section 2. In addition, SE calculations are
performed in a separate thread, which allows one to interact with the GUI at any time.
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5.2. Software Feature

The software prototype developed so far implements only one part of the algorithm
proposed in Section 3, which allows one to evaluate the SE of empty enclosures. However,
some distinctive features and useful functionalities have been added to the prototype, and
the authors feel that they should be presented in this article.

The main feature of the prototype is the ability to calculate and display a three-
dimensional SE pattern, depending on the frequency of excitation source and the position
of the observation point inside the enclosure. This feature makes it possible to identify
areas where the SE has the worst values, which can be useful for selecting the optimum
arrangement of electronic equipment parts within the shielding enclosure at the initial stage
of design. An example of calculating a three-dimensional SE pattern in the prototype GUI
is shown in Figure 26. Thus, Figure 26a illustrates the parameters and appearance of the
enclosure under analysis. Figure 26b presents the SE pattern, depending on the frequency
and the position of the observation point. The SEs are plotted along the vertical axis, and
the frequency values (from 1 MHz to 2 GHz) and observation points along the enclosure
(from 1 mm to 299 mm) are plotted along the other two axes.

The prototype also contains a functional for calculating the error between the SE
frequency dependencies obtained in the software and in the external source. For this
purpose, mechanisms for loading text files and data interpolation are implemented. To
calculate the integrals in expression (17), the prototype uses the trapezoidal technique,
together with Runge’s error estimation rule. The maximum error was set at 0.3%, which
allowed us to reduce the computation time of Zap without losing the accuracy of the SE
evaluation. The prototype also contains a functional for predicting the complexity of the
SE computation, which operates based on data about the RAM of the PC running the
software. This functional allows one to adjust the initial data or to abort an unreasonably
long calculation before it begins.
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6. Conclusions

This article has proposed a generalized algorithm, based on equivalent circuits, for
evaluating the SEs of electronic equipment enclosures. We first reviewed and systematized
most of the existing analytical models that use equivalent circuits in calculating the SE.
After generalizing these models, we developed the SE evaluation algorithm and described
it in the form of flowcharts. Next, using six different enclosures as examples, the algorithm
was validated by two measurement methods and numerical analysis based on FEM. The
validation results showed that the proposed algorithm allows one to calculate the SE more
than 106 times faster than FEM. At the same time, it has an acceptable accuracy, since the
average value of the absolute error modulus in all considered cases did not exceed 5.6 dB.
The last part of this article presented a prototype of our software for analyzing shielding
enclosures of electronic equipment, which we plan to develop further.

In conclusion, we prefer to note that, despite the good accuracy and low computation
time, the algorithm proposed in this article has some disadvantages. The main one is
its low variability due to the use of analytical models that cannot describe any arbitrary
enclosure structure. For example, the algorithm cannot be used to analyze nested enclosures,
unshielded cables penetrating the shield, enclosures with uneven or curved walls, etc. In
contrast, almost any enclosure can be analyzed using numerical methods, although, as
mentioned in the introduction, this requires significant computational costs. We believe
that a new tool for a fast SE evaluation in the future could be a machine learning model.
For this reason, some of our future research is expected to be devoted to developing and
analyzing such a model. Another important disadvantage of the algorithm is that the
enclosure is assumed to be perfectly conductive, i.e., penetration directly through the walls
is ignored. This means that the algorithm is not well suited to the analysis of shields
exposed to low-frequency and static H-fields.
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