ОПТИМАЛЬНЫЕ РАЗРЕЖЕННЫЕ АНТЕННЫ С МИНИМАЛЬНОЙ МАССОЙ

М.Т. Нгуен, аспирант каф. ТУ;

А. Алхадж Хасан, м.н.с. НИЛ «БЭМС РЭС»

Научный руководитель Т.Р. Газизов, д.т.н., доцент каф. ТУ г. Томск, ТУСУР, nguyen.t.2213-2022@e.tusur.ru

Предложен новый модифицированный подход к созданию разреженных антенн, аппроксимированных проводной сеткой, на примере зеркальной антенны, которая моделировалась и была изготовлена ранее. Основная идея заключается в создании оптимальной проводной структуры, которая максимально повторяет пути тока в антенне, сохраняя её целостность при минимальной массе. Результаты этого подхода сравнивались с результатами, полученными ранее другими подходами, а также с результатами измерений. Сравнения показали, что, несмотря на то, что новый подход даёт уровень боковых лепестков антенны немного выше, чем при других подходах, он способен давать приемлемые результаты с меньшими вычислительными затратами и создавать структуры с меньшей массой, сохраняя при этом целостность структуры антенны, что снижает сложность ее изготовления.

Ключевые слова: метод моментов, проводная сетка, разреженные антенны, аппроксимация оптимальной токовой сеткой, зеркальная антенна.

В настоящее время существуют различные методы для моделирования антенн, например, метод конечных разностей во временной области (МКРВО) [1], метод конечных элементов (МКЭ) [2] и метод моментов (МоМ) [3]. Последний способен решать электромагнитные задачи с меньшими вычислительными затратами, чем у других методов, при сохранении приемлемой точности результатов [4]. На основе МоМ разработан подход к моделированию антенн, который основан на аппроксимации поверхности проводящей структуры антенны проводной сеткой [5]. Он использован при разработке другого подхода к моделированию и созданию разреженных антенн, названного аппроксимацией оптимальной токовой сеткой (АОТС) [6].

В результате применения АОТС можно получить эквивалентную структуру антенны в виде разреженной сетки, в которой исключены те провода, модуль тока которых меньше заданного уровня относительно максимального. Данный уровень называется допуском удаления элемента сетки (ДУЭС). Одним из недостатков применения АОТС к непечатным структурам антенн являются технические трудности, возникающие при изготовлении полученных структур из-за наличия свободных (не соединенных между собой) проводов. Для устранения этого недостатка предложено несколько модификаций исходной аппроксимации, например, «соединяющая» АОТС (САОТС), описанная в работе [6]. Однако она оптимальна, если важно получить разреженную структуру, которая близка по своим характеристикам к исходной, но не для уменьшения массы, поскольку она восстанавливает много радиальных проводов для сохранения путей тока в структуре. Это влияет не только на вычислительные затраты при использовании полученной структуры при последующем моделировании, но и на массу изготовленной антенны в ее разреженной форме. Поэтому целью данной работы является рассмотрение новой АОТС, которая даёт соединённую проводную разреженную структуру с меньшей массой, чем при САОТС.

Предлагается модифицировать АОТС, исключая из проводной структуры антенны провода с модулем тока меньше максимального, умноженного на значение ДУЭС при максимально близком повторении пути тока в ней с меньшим количеством проводов. Этого можно достичь путем восстановления только тех проводов, которые необходимы для установления связи между свободным проводом и ближайшими к нему проводами в структуре. Исходя из этого, такую АОТС можно назвать использующей только ближайшие провода для соединения свободных проводов (СБАОТС).

СБАОТС будет проиллюстрирована на примере моделирования зеркальной антенны из работы [7] (рис. 1, a), проводной структурой (далее в тексте называемой исходной), представленной на рис. 1, δ .

Рис. 1. Исследуемая зеркальная антенна [7] (*a*) и её эквивалентная проводная структура (б)

Проводная структура рефлектора зеркальной антенны построена из *S* участков сетки и *T* уровней, начиная от центра рефлектора. При построении участка сетки строятся два провода на каждом уровне. При этом каждому радиальному проводу присваивается чётный номер, а концентрическому – нечётный. В результате количество проводов в каждом участке будет 2T, а общее количество проводов для построения рефлектора равно $N_{\rm S} = 2T^*S$ (рис. 2, *a*). Далее после удаления проводов по АОТС СБАОТС ищет свободные провода и восстанавливает ближайшие к ним, чтобы сохранить целостность проводной структуры.

Рис. 2. Описание схемы построения структуры зеркальной антенны (*a*) и процесса восстановления проводов по СБАОТС (б)

Для проверки эффективности подхода СБАОТС сравнивались результаты её применения с результатами применения АОТС и САОТС к той же антенне, полученными в работе [6], при ДУЭС = 10% на частоте 5,9 ГГц (рис. 3).

Рис. 3. Антенны, полученные после АОТС (а), САОТС (б) и СБАОТС (в)

Диаграммы направленности (ДН) антенны после СБАОТС сравнивались с ДН для исходной структуры и измеренными из [7] в плоскостях E и H (рис. 4). Они также сравнивались с полученными после АОТС и САОТС [6] (рис. 5). Из рис. 4 видно, что уровни боковых лепестков после СБАОТС выше, чем для исходной структуры, максимум на 10 дБ. Однако они остаются приемлемыми, поскольку главной задачей антенн такого типа является повышение излучения в основном направлении. Уровень боковых лепестков при СБАОТС также немного выше, чем при САОТС (см. рис. 5), но расхождения наблюдаются лишь при некоторых углах.

Рис. 4. ДН антенны, измеренные в [7] (—) и вычисленные для оригинальной [6] (…) и разреженной после СБАОТС (---) антенн, при ДУЭС=10% на частоте 5,9 ГГц в плоскостях *E* (*a*) и *H* (*б*)

Рис. 5. ДН разреженных антенн после АОТС [6] (—), САОТС [7] (…) и СБАОТС (---) при ДУЭС=10% в *E* (*a*) и *H* (*б*) плоскостях

Первоначальное количество проводов для исходной структуры N_S =3000, после АОТС N_A =2112, САОТС – N_C =2335, а СБАОТС – N_N =2166. Основные затраты времени на решение СЛАУ (здесь методом Гаусса) пропорциональны третьей степени её порядка $O(N)^3$, а памяти – $O(N)^2$. Тогда уменьшение массы антенны в разах будет N_S/N_X (где N_X – количество проводов для рассмотренной аппроксимации), памяти – $(N_S/N_X)^2$, а времени – $(N_S/N_X)^3$. Рассчитанные улучшения характеристик после предложенных аппроксимаций относительно исходной структуры представлены в таблице.

после предложенных анпрокенмации относительно неходной структуры			
	Масса, раз	Память, раз	Время, раз
AOTC	1,42	2,02	2,87
CAOTC	1,28	1,65	2,12
СБАОТС	1,39	1,92	2,66

Улучшение характеристик после предложенных аппроксимаций относительно исходной структуры

В результате применение СБАОТС, предложенной здесь для создания разреженных антенн, даёт уровень боковых лепестков немного больше, чем САОТС. Но его результаты остаются приемлемыми, получаются с меньшими вычислительными затратами и дают меньшую массу антенн на 8,59%, чем САОТС, сохраняя при этом целостность структуры, что снижает сложность её изготовления. Таким образом, результаты показывают, что применение СБАОТС даёт более совершенные антенны по сравнению с АОТС и САОТС.

Работа выполнена при финансовой поддержке Минобрнауки России по проекту FEWM-2023-0014.

ЛИТЕРАТУРА

1. Yee K.S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media // IEEE Transactions on Antennas and Propagation. – 1966. – Vol. 14, No. 3. – PP. 302–307.

2. Jin J.M. The Finite Element Method in Electromagnetics. – Wiley: Hoboken, NJ, USA, 2014. – 876 p.

3. Харрингтон Р.Ф. Применение матричных методов к задачам теории поля // Труды Института инженеров по электронике и радиотехнике. – 1967. – № 2. – С. 5–19.

4. Газизов Т.Р. Система компьютерного моделирования сложных структур проводников и диэлектриков // Матер. Всерос. науч.-практ. конф., посвященной 40-летию ТУСУРа. – Томск: ТУСУР, 2002. – Т. 1. – С. 126–128.

5. On wire-grid representation for modeling symmetrical antenna elements / A. Alhaj Hasan, D.V. Klyukin, A.A. Kvasnikov, M.E. Komnatnov, S.P. Kuksenko // Symmetry. – 2022. – Vol. 14, No. 7. – P. 1354.

6. Wire-grid and sparse MoM antennas: past evolution, present implementation and future possibilities / A. Alhaj Hasan, T.M. Nguyen, S.P. Kuk-senko, T.R. Gazizov // Symmetry. – 2023. – Vol. 15, No. 2. – P. 378.

7. Jirous antennas direction for your waves [Электронный ресурс]. – Режим доступа: https://en.jirous.com/antenna-5ghz-parabolic/jrc-24DD_MIMO, свободный (дата обращения: 15.02.2023).