18 XXI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

УДК 621.391.825

Способ трассировки двух дифференциальных пар с сильной электромагнитной связью между парами

<u>С.В. Власов</u> Научный руководитель: к.т.н. Е.С. Жечев Томский государственный университет систем управления и радиоэлектроники, Россия, г. Томск, пр. Ленина, 40, 634050 E-mail: Lukashinka12@gmail.com

Routing technique of two differential pairs with strong electromagnetic coupling between conductors

<u>S.V. Vlasov</u> Scientific Supervisor: Ph.D. Y.S. Zhechev Tomsk State University of Control Systems and Radioelectronics, Russia, Tomsk, Lenina str., 40, 634050 E-mail: Lukashinka12@gmail.com

Abstract. We present the results of an electrodynamic simulation of the single and coupled differential pairs with strong electromagnetic coupling between conductors. The simulation was performed in the time domain using: broadband and narrowband pulses. The results show that the coupled differential pairs provide better broadband and narrowband pulses attenuation compared to the single differential pair.

Key words: electrodynamic simulation, time domain analysis, differential pair.

Введение

Широкое применение радиоэлектронной аппаратуры (РЭА) приводит к обострению проблемы обеспечения электромагнитной совместимости (ЭМС) [1]. С ростом плотности размещения компонентов и трассировки межсоединений увеличивается взаимное влияние одних элементов РЭА на другие. Поэтому при проектировании РЭА актуально обеспечение ЭМС, в том числе за счет улучшения помехозащищённости.

Существуют устройства и интерфейсы, которые работают в дифференциальном режиме. Так, например, интерфейсы LVDS широко применяются в современной электронике [2]. Кондуктивные помехи, такие как внешние электромагнитные воздействия и электрические шумы, могут негативно влиять на качество передачи данных [3]. Для обеспечения надежной работы РЭА необходимо предпринимать меры по их защите от нежелательных воздействий. Из множества электромагнитных помех, воздействующих на РЭА, можно выделить сверхширокополосные (СШП) и узкополосные (УП) помехи. Спектр СШП помех лежит в диапазоне от 0 до 6–8 ГГц, а УП помех от единиц ГГц и выше. В случае УП помех ширина спектра должна быть меньше или равна ширине полосы пропускания устройства. Также такие помехи обладают большей амплитудой по сравнению с амплитудами рабочих сигналов в цепях и интерфейсах, работающих в дифференциальном режиме. В данной работе предлагается трассировать дифференциальные пары таким образом, чтобы их взаимное влияние уменьшило влияние электромагнитных помех на защищаемое устройство. Цель работы – представить результаты разработки способа трассировки двух дифференциальных пар, повышающих устойчивость к электромагнитным помехам.

Материалы и методы исследования

Изначально использовалась одна дифференциальная пара на микрополосковой линии (рис. 1 (а)). Далее предложено использовать вторую дифференциальную пару, расположенную с минимальным технологическим зазор между ними (рис. 1 (б)) для

ХХІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ 19 УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

увеличения электромагнитной связи между ними. Поперечное сечение двух связанных дифференциальных пар представлено на рис. 1 (в). Геометрические параметры структуры: ширина проводников w = 170 мкм, расстояние между проводниками s = 350 мкм, расстояние между витками d = 70 мкм, высота подложки h=101 мкм, высота проводников t = 35 мкм. Диэлектрическая проницаемость подложки $\varepsilon_r = 4,5$ (соответствует материалу FR-4). Сопротивление резисторов составило 100 Ом.

Рис. 1. Эквивалентные схемы включения одиночной (a) и связанных (б) дифференциальных пар, а также их поперечное сечение (в)

Для исследования характеристик структур использован электродинамический подход. С помощью метода моментов рассчитаны S-параметры, которые после использовались для анализа характеристик во временной области.

Результаты моделирования

После определения структуры в частотной области на его вход подавались импульсные воздействия. Для анализа во временной области выбраны два сигнала: Гауссов импульс с шириной спектра от 0,1 до 6 ГГц (рис.2 (*a*)). Такое воздействие соответствует определению СШП помехи из стандарта МЭК [4]. Для оценки возможности применения структур для защиты от УП помех рассмотрена затухающая синусоида (рис.2 (*б*)), которая используется в соответствии со стандартом MILSTD-461F [5].

Временные отклики на СШП и УП помехи представлены на рис. 3. На рис. 4 приведено наведенное напряжение ближнем и дальнем концах на второй дифференциальной пары.

второй связанной дифференциальной пары

Из полученных результатов видно, что произошло ослабление помехи как для одной дифференциальной пары, так и для двух. Но при использовании двух дифференциальных пар получено большее ослабление, что связано с отведением части энергии на вторую дифференциальную пару. В случае СШП помехи ослабление составило: для одной дифференциальной пары 2 раза, для двух – 3,5 раза (что на 37,7 % больше). Ослабление при воздействии УП помехи составило 3,45 раз и 5 раз, соответственно (что на 45 % больше).

Заключение

данной работе проведено трассировки R исследование способа двух дифференциальных пар с сильной электромагнитной связью между проводниками. Результаты показали, что использование двух связанных дифференциальных пар позволяют большее ослабление помеховых сигналов получить ПО сравнении с одиночной. В дальнейшем планируется проведение анализа целостности полезного сигнала.

Работа выполнена в рамках проекта FEWM-2024-0005 Минобрнауки России

Список литературы

1. Газизов Т.Р. Электромагнитная совместимость и безопасность радиоэлектронной аппаратуры: учебное пособие. – Томск: «ТМЛ-Пресс», 2007. – 256 с.

2. IEEE Std 1596.3-1996. IEEE Standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI). – NY: IEEE, 1996. – 34 p.

3. Гизатуллин З.М. Помехоустойчивость средств вычислительной техники внутри зданий при широкополосных электромагнитных воздействиях: монография. – Казань: Казанский государственный технический университет им. А.Н. Туполева, 2012. – 254 с.

4. IEC/TR 61000-1-5-2017. Electromagnetic Compatibility (EMC). Part 1–5: General. High power electromagnetic (HPEM) effects on civil systems. – Geneva: IEC, 2004. – 43 p.

5. MIL-STD-461F. Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment. -NY: IEEE, 2007. -255 p.